SUBJECT: Prescription of Ivermectin or Hydroxychloroquine as Off-Label Medicines for the Prevention or Treatment of Covid-19

REQUESTED BY: Dannette R. Smith
Chief Executive Officer
Nebraska Department of Health and Human Services

WRITTEN BY: Douglas J. Peterson, Attorney General
James A. Campbell, Solicitor General
Mindy L. Lester, Assistant Attorney General

INTRODUCTION

On September 16, 2021, you requested our opinion on whether it would be "deemed unlawful or otherwise subject to discipline under [Neb. Rev. Stat. § 38-186] for an appropriately licensed health care provider, once informed patient consent has been appropriately obtained, to prescribe" ivermectin, hydroxychloroquine, or other "off label use" medications “for the treatment or prevention of COVID-19.” You requested this opinion in your role as Chief Executive Officer of the Nebraska Department of Health and Human Services (“Department”). Neb. Rev. Stat. § 84-205(4) gives you, as the head of an executive department, the authority to ask our office’s opinion on legal questions like this one.

The Department, acting through its Division of Public Health, enforces the Nebraska Uniform Credentialing Act (“UCA”). The purpose of the UCA is to protect public
health, safety, and welfare. One way in which the Department protects the public is by investigating complaints alleging that licensed healthcare professionals have committed UCA violations. After the Department completes an investigation, it refers the matter to the appropriate professional board to consider and make a recommendation to the Attorney General. Neb. Rev. Stat. § 38-186 then gives the Attorney General the authority to file a petition for discipline against the healthcare provider if such action is warranted.

You indicate in your request that “[c]onsumers and health care providers have been and continue to be inundated with information and opinions[] regarding COVID-19 treatment and prevention.” You also note that due to the “sheer volume” of conflicting information, questions have been raised “regarding the permissibility of certain medications for the treatment or prevention of COVID-19.” This observation is consistent with questions that our office has received from constituents and discussions that our office has witnessed at some of the professional boards’ meetings.

After receiving your question and conducting our investigation, we have found significant controversy and suspect information about potential COVID-19 treatments. A striking example features one of the world’s most prestigious medical journals—the Lancet. In the middle of the COVID-19 pandemic, the Lancet published a paper denouncing hydroxychloroquine as dangerous. Yet the reported statistics were so flawed that journalists and outside researchers immediately began raising concerns. Then after one of the authors refused to provide the analyzed data, the paper was retracted, but not before many countries stopped using hydroxychloroquine and trials were cancelled or interrupted. The Lancet’s own editor in chief admitted that the paper was a “ fabrication,” “a monumental fraud,” and “a shocking example of research misconduct in the middle of

a global health emergency.7 When fraudulent information is published in a leading medical journal, it understandably leads to skepticism in some physicians and members of the public. Mindful of these concerns about misunderstandings and mistrust, we have drafted a rather lengthy opinion that aims to address the public confusion and outline the relevant scientific literature that supports our legal conclusions.

At the outset, we pause to delineate the parameters of this opinion. The question presented asked about ivermectin, hydroxychloroquine, and other drugs used “off label”—that is, for a purpose other than the specific use approved by the U.S. Food and Drug Administration (“FDA”). To enable us to respond in a timely manner, we have confined our discussion to ivermectin and hydroxychloroquine only. But in doing so, we do not mean to rule out the possibility that other off-label drugs might show promise—either now or in the future—as a prophylaxis or treatment against COVID-19. Also, because our investigation has revealed that physicians who currently use hydroxychloroquine for COVID-19 do so as either a prophylaxis or an early treatment for outpatients (as opposed to a late treatment in hospitalized patients), we will confine our consideration of hydroxychloroquine to those two uses. In addition, we note that there are treatment options the FDA has approved, either through an Emergency Use Authorization (“EUA”) or through the regular FDA drug-approval process, for COVID-19 prophylaxis or treatment. These include monoclonal antibodies, vaccines, and remdesivir. We do not take any position on those options because they are outside the scope of the question asked.

In the end, as we explain below, we find that the available data does not justify filing disciplinary actions against physicians simply because they prescribe ivermectin or hydroxychloroquine to prevent or treat COVID-19. If, on the other hand, healthcare providers neglect to obtain informed consent, deceive their patients, prescribe excessively high doses, fail to check for contraindications, or engage in other misconduct, they might be subject to discipline. But based on the evidence that currently exists, the mere fact of prescribing ivermectin or hydroxychloroquine for COVID-19 will not result in our office filing disciplinary actions. While our terminology throughout this opinion focuses on physicians prescribing these medicines, what we conclude necessarily applies to other licensed healthcare professionals who prescribe, participate in, or otherwise assist with a treatment plan utilizing these medications.

ANALYSIS

1. The Nebraska Uniform Credentialing Act and Other Relevant Law

The UCA was enacted by the legislature to license and regulate persons and businesses that provide healthcare and health-related services.8 The UCA was adopted

7 Boseley & Davey, supra.

to protect public health, safety, and welfare, and to provide for the efficient, adequate, and safe practice of credentialed persons and businesses. It is the intent of the Legislature,” the UCA explains, “that quality health care services and human services be provided to the public” and “that professionals be regulated by the state only when it is demonstrated that such regulation is in the best interest of the public.”

The UCA grants the Director of Public Health of the Department’s Division of Public Health the authority to deny a credential, refuse a credential renewal, or discipline a credential holder, although the Chief Medical Officer (if one is appointed) shall perform the Director’s duties for decisions in contested administrative cases. The Department must provide “the Attorney General with a copy of all complaints it receives and advise the Attorney General of investigations it makes” regarding possible violations of the UCA. Following review and recommendation from the appropriate professional health board, the Attorney General must then determine whether the credential holder has violated any statutes or regulations and decide whether to proceed with administrative action.

If the Attorney General determines that a violation has occurred, he “shall” file a petition for disciplinary action with the Department. The Attorney General cannot prevail in disciplinary proceedings against a licensed healthcare professional unless he proves the claim by clear and convincing evidence.

The grounds for disciplinary action are set forth in Neb. Rev. Stat. § 38-178 and include, among other things, acting with “gross incompetence or gross negligence,” practicing in “a pattern of incompetent or negligent conduct,” or engaging in “unprofessional conduct” as set forth in Neb. Rev. Stat. § 38-179. Gross incompetence is a very high standard; it occurs only when there is “such an extreme deficiency on the part of a physician in the basic knowledge and skill necessary for diagnosis and treatment that one may reasonably question his or her ability to practice medicine at the threshold level of

professional competence."17 Neb. Rev. Stat. § 38-179 generally defines unprofessional conduct as a "departure from or failure to conform to the standards of acceptable and prevailing practice of a profession or the ethics of the profession, regardless of whether a person, consumer, or entity is injured, or conduct that is likely to deceive or defraud the public or is detrimental to the public interest."18 Along these same lines, the regulation governing physicians states that unprofessional conduct includes:

[c]onduct or practice outside the normal standard of care in the State of Nebraska which is or might be harmful or dangerous to the health of the patient or the public, not to include a single act of ordinary negligence.19

Healthcare providers do not violate the standard of care when they "select between two reasonable approaches to . . . medicine."20 Regulations also indicate that physicians may utilize reasonable "investigative or unproven therapies" that reflect a reasonable approach to medicine so long as physicians obtain "written informed patient consent."21 "Informed consent concerns a doctor's duty to inform his or her patient," and it includes telling patients about "the nature of the pertinent ailment or condition, the risks of the proposed treatment or procedure, and the risks of any alternative methods of treatment, including the risks of failing to undergo any treatment at all."22 Regulations require physicians "to keep and maintain" records that disclose the "advice and cautionary warnings provided to the patient."23

Prescribing medicines for off-label use—that is, for some purpose other than the use approved by the FDA—often falls within the standard of care. Indeed, "[o]ff-label use is legal, common, and necessary,"24 and "[c]ourts have repeatedly recognized the propriety of off-label use."25 This includes the U.S. Court of Appeals for the Eighth Circuit, which has acknowledged that "[d]octors may prescribe an FDA-approved drug for

25 Id. (collecting cases).
nonapproved uses." And the U.S. Supreme Court, in an analogous context, has affirmed that "off-label usage of medical devices" is an "accepted and necessary" practice. Even the FDA recognizes that off-label use is legitimate: it has said for many decades that once it approves a drug, "a physician may prescribe it for uses or in treatment regimens or patient populations that are not included in approved labeling." Expanding on that point, the FDA has explained that "healthcare providers generally may prescribe [a] drug for an unapproved use when they judge that it is medically appropriate for their patient." Nothing in the federal Food, Drug, and Cosmetic Act ("FDCA") "limit[s] the manner in which a physician may use an approved drug."

Based on these principles, we conclude that governing law allows physicians to use FDA-approved medicines that are unproven for a particular off-label use so long as (1) reasonable medical evidence supports that use and (2) a patient's written informed consent is obtained. In the context of this ever-changing global pandemic, we note that it is appropriate to consider medical evidence outside of Nebraska and to give physicians who obtain informed consent an added measure of deference on their assessment of the available medical evidence.

2. COVID-19 and SARS-CoV-2

The disease known as COVID-19 and the virus that causes it—SARS-CoV-2—took the world by storm in late 2019 and early 2020. While there is still so much that the medical community does not know about SARS-CoV-2 and COVID-19, it is widely recognized that COVID-19 is a multifaceted disease. "[A]dults with SARS-CoV-2 infection can be grouped" into at least three different categories depending on the progression of their disease. The first group has an asymptomatic or presymptomatic infection, meaning that those individuals have "test[ed] positive for SARS-CoV-2" but "have no symptoms

26 Rhone-Poulenc Rorer Pharms., Inc. v. Marion Merrell Dow, Inc., 93 F.3d 511, 514 n.3 (8th Cir. 1996).

30 FDA Drug Bulletin, supra, at 5. Because the question posed to us asks about prescribing drugs for off-label use, any view on the legality of efforts to market drugs for off-label use is outside the scope of this opinion.

that are consistent with COVID-19." A second group experiences a mild illness that manifests itself through "any of the various signs and symptoms of COVID-19 (e.g., fever, cough, sore throat, malaise, headache, muscle pain, nausea, vomiting, diarrhea, loss of taste and smell)" but does not include "shortness of breath, dyspnea, or abnormal chest imaging." And a third group suffers from a more severe illness marked by "evidence of lower respiratory disease" and deficient "oxygen saturation" levels. When people in this third category reach a critical level, they often "have respiratory failure, septic shock, and/or multiple organ dysfunction."

A recently published paper on COVID-19 recognized that "for reasons that are yet to be clarified, early treatment has not been emphasized" in Western countries like the United States. Despite this, many healthcare providers in the United States advocate for early treatment, particularly for high-risk patients. In fact, scores of treating and academic physicians have published papers in well-respected journals like the American Journal of Medicine explaining that the "multifaceted pathophysiology of life-threatening COVID-19 illness . . . warrants early interventions" and encouraging "outpatient treatment of the illness with the aim of preventing hospitalization or death." Also, a declaration of the International Alliance of Physicians and Medical Scientists—which is apparently signed by over 10,000 physicians and scientists, more than 60 of whom are publicly identified online—supports a doctor's choice to provide early COVID-19 care rather than "advising their patients to simply go home . . . and return when their disease worsens."
These groups of physicians have established protocols for early treatment, and ivermectin and hydroxychloroquine are staples of those treatments. As discussed in greater detail below, while the scientific literature is continuing to grow, some data suggest that ivermectin- or hydroxychloroquine-based early treatments of COVID-19 can be effective in thwarting hospitalization and death.

3. Ivermectin

A. History of Ivermectin

Researchers discovered ivermectin in the 1970s, and while its first use was to treat parasites in animals, ivermectin has been used in humans since the 1980s. In the early years, ivermectin effectively stymied the scourge of two devastating parasitic diseases—onchocerciasis (also known as river blindness) and lymphatic filariasis—"among poverty-stricken populations throughout the tropics." These are two of the most "disfiguring diseases" that "have plagued the world's poor . . . for centuries." Later, the use of ivermectin was expanded to include "the treatment of scabies and lice."

40 E.g., McCullough, *Multifaceted*, supra, at 519 Table 1 (listing early treatment kits that include both ivermectin and hydroxychloroquine); McCullough, *Pathophysiological*, supra, at 18–19 (discussing hydroxychloroquine).

41 E.g., Flavio A. Cadegiani et al., *Early COVID-19 therapy with azithromycin plus nitazoxanide, ivermectin or hydroxychloroquine in outpatient settings significantly improved COVID-19 outcomes compared to known outcomes in untreated patients*, New Microbes and New Infections (Sept. 2021), available at https://www.sciencedirect.com/science/article/pii/S2052297521000792 (last visited Oct. 14, 2021) (finding that "the use of nitazoxanide, ivermectin[,] and hydroxychloroquine demonstrated unexpected improvements in COVID-19 outcomes when compared to untreated patients").

43 Id.

Given its track record as a medicine for humans, ivermectin has long since been "approved as an antiparasitic" by the World Health Organization (WHO) and the FDA.48 The WHO has also recognized ivermectin as one of its "Essential Medicines."47 Further recognizing the importance of this drug, in 2015 its discoverers won the Nobel Prize in Medicine for their work in uncovering it and bringing it to market.48

In the decade leading up to the COVID-19 pandemic, studies began to show ivermectin's surprising versatility. By 2017, ivermectin had "demonstrate[d] antiviral activity against several RNA viruses by blocking the nuclear trafficking of viral proteins."49 One recent systematic review cited more than a handful of studies to "demonstrate that ivermectin has antiviral properties against an increasing number of RNA viruses, including influenza, Zika, HIV, [and] Dengue."50 And another review summarized the "antiviral effects of ivermectin" demonstrated through "studies over the past 50 years."51

Before the pandemic, scholarly literature had also recognized ivermectin's "anti-inflammatory capacity."52 Doctors thus have been using ivermectin to treat "rosacea, a chronic inflammatory disease," that manifests itself as a reddening of the face, and the FDA has approved ivermectin for that purpose.53 Ivermectin's ability to "curb inflammation," one reviewer wrote, may also "be useful in treating . . . inflammatory airway diseases."54 Summing it up, that same reviewer recognized that "ivermectin is continuing

48 Id.

47 Id.

49 Crump, ivermectin, supra, at 500.

51 Fatemeh Heidary & Reza Gharebaghi, Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen, 73 The Journal of Antibiotics 593, 593 (2020), available at https://www.nature.com/articles/s41429-020-0336-z.pdf (last visited Oct. 14, 2021) ("Several studies reported antiviral effects of ivermectin on RNA viruses Furthermore, there are some studies showing antiviral effects of ivermectin against DNA viruses").

52 Crump, ivermectin, supra, at 499.

54 Crump, ivermectin, supra, at 499; see also Arianna Portmann-Baracco et al., Antiviral and anti-inflammatory properties of ivermectin and its potential use in Covid-19, 56 Archivos De Bronconeumologia
to surprise and excite scientists, offering more and more promise to help improve global public health by treating a diverse range of diseases.55 For more than three decades, ivermectin has also shown itself to be very safe. Indeed, the National Institutes of Health ("NIH") recognize that "ivermectin has been widely used and is generally well tolerated."56 One recent systematic review similarly states that "ivermectin at the usual doses . . . is considered extremely safe for use in humans."57 Other studies have noted that the medicine "has an established safety profile for human use,"58 and it "provide[s] a high margin of safety for a growing number of indications."59 Notably, a December 2018 WHO-supported application to add ivermectin as an essential medicine for scabies reviewed the data and concluded that the adverse events associated with ivermectin are "primarily minor and transient."60

The available data support this conclusion. The WHO's VigiAccess database, which compiles adverse drug reactions from throughout the world, breaks down the reported side effects for drugs into different categories.61 The largest reported categories for ivermectin include skin issues, headaches, dizziness, and gastrointestinal disturbances such as diarrhea and nausea.62 The NIH confirms that ivermectin's primary adverse side effects "include dizziness, pruritis [itchy skin], nausea, or diarrhea."63 And

\begin{itemize}
\item 55 Crump, \textit{Ivermectin}, supra, at 495.
\item 57 Bryant, \textit{Ivermectin}, supra, at 435.
\item 58 Leon Caly et al., \textit{The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro}, Antiviral Research 178 at 3 (June 2020), \url{https://www.sciencedirect.com/science/article/pii/S0166354220302011} (last visited Oct. 14, 2021).
\item 59 Kircik, \textit{Ivermectin}, supra, at 325.
\item 60 WHO Expert Committee on the Selection and Use of Essential Medicines: Application for inclusion of ivermectin on the WHO Model List of Essential Medicines (EML) and Model List of Essential Medicines for Children (EMLc) for the indication of Scabies at 19 (Dec. 2018), \url{https://www.who.int/selection_medicines/committees/expert/22/applications/s6.6_ivermectin.pdf} (last visited Oct. 14, 2021).
\item 61 VigiAccess, Uppsala Monitoring Centre, WHO Collaborating Centre for International Drug Monitoring, \url{http://www.vigiaccess.org/} (last visited Oct. 14, 2021).
\item 62 \textit{Id.}
\item 63 NIH, COVID-19 and Ivermectin, supra.
\end{itemize}
a recent review of ivermectin similarly describes the common side effects as “itching, rash, swollen lymph nodes, joint pain[], fever, and headache.”

The data show not only that the adverse side effects are minor, but also that the percentage of people who report experiencing any adverse events is vanishingly small. The latest statistics available through VigiAccess report only 5,674 adverse drug reactions from ivermectin between 1992 and October 13, 2021. This number is incredibly low considering that “more than 3.7 billion doses” of ivermectin have been administered to humans worldwide since the 1980s.

To illustrate the safety of ivermectin, compare its VigiAccess report to that of remdesivir, an FDA-approved treatment for COVID-19. Remdesivir was not released for widespread use until 2020. Yet in the short period of time that it has been on the market, people have reported at least 7,491 adverse drug reactions on VigiAccess, more than ivermectin has registered over the last 30 years. What’s more, serious adverse reactions from remdesivir are reported in high numbers. For example, in less than two years, those who have used remdesivir have reported over 560 deaths, 550 serious cardiac disorders (such as bradycardia and cardiac arrest), and 475 acute kidney injuries. Since that safety profile is sufficient to retain FDA approval, ivermectin’s safety record cannot reasonably be questioned.

B. Ivermectin and COVID-19

As discussed above, ivermectin had shown its antiviral and anti-inflammatory properties long before the pandemic began. So when COVID-19 began to spread across the globe, some in the medical community quickly identified ivermectin as a potential drug for the prevention and treatment of COVID-19. Initially, a group of researchers found that ivermectin significantly inhibited replication of SARS-CoV-2 in cell cultures. Dismissing

64 Kory, supra, at 314.

69 Id.

70 Caly, supra, at 1.
that finding, ivermectin doubters argued that too much of the drug would be needed to achieve this antiviral activity in humans.71 But peer-reviewed models undermined those concerns by showing that the predicted accumulation of ivermectin in the lungs—the site in the body where the medicine is most needed—would be over 10 times higher than necessary for antiviral activity.72 In layman’s terms, these models indicated that an effective level of the medicine can be reached in lung tissue without creating toxicity in the blood. Plus, other pro-ivermectin doctors have explained that the amount of the drug “required for an effect in cell culture models bear[s] little resemblance to human physiology” because cell cultures lack “an active immune system working synergistically with” the medicine.73

The doctors who believed that ivermectin could be effective against COVID-19 also identified its anti-inflammatory properties as an important countermeasure to the disease. One reason why COVID-19 progresses to its severe phase, many believe, is “the provocation of an overwhelming and injurious inflammatory response.”74 Thus, ivermectin’s anti-inflammatory effects suggest that it can help COVID-19 patients as the disease worsens.

\textit{i. Ivermectin Studies and Meta-analyses}

Since the COVID-19 pandemic began, researchers have conducted over 20 randomized controlled trials (RCTs) and more observational trials to evaluate ivermectin’s effectiveness in the prevention and treatment of COVID-19.75 Many of those trials showed promise. On the question of COVID-19 prevention, the Shouman study out of Egypt—a RCT—evaluated ivermectin as a potential prophylaxis for close family members of COVID-19 patients.76 The test group included 203 family members who took

73 Kory, supra, at 301.

74 Id.

75 Bryant, \textit{Ivermectin}, supra, at 435.

ivermectin, and only 15 of them (7.4%) developed COVID-19.77 Compare that to the 101 family members in the control group, 59 of whom (58.4%) tested positive during the study.78 These outcomes prompted the research team to conclude that ivermectin is “a promising, effective[,] and safe chemoprophylactic drug in management of COVID-19.”79 Also, the Behera study in India tested ivermectin as a prophylaxis in a group of 3,532 healthcare workers.80 Of the 2,199 workers who took two doses of ivermectin prophylaxis three days apart, only 45 (2%) tested positive for COVID-19.81 But of the 1,147 workers who did not take ivermectin, 133 (11.6%) contracted the disease.82 Behera’s team thus announced that two doses of ivermectin “as chemoprophylaxis among [healthcare workers] reduced the risk of COVID-19 infection by 83% in the following month.”83

Moving beyond ivermectin’s role as a prophylaxis, other studies have demonstrated its potential as a COVID-19 treatment. The Mahmud study—a RCT that explored ivermectin as an early treatment for 363 individuals—concluded that “[p]atients with mild-to-moderate COVID-19 infection treated with ivermectin plus doxycycline recovered earlier, were less likely to progress to more serious disease, and were more likely to be COVID-19 negative . . . on day 14.”84 And Niaee’s research team found that ivermectin can help even hospitalized patients.85 That group conducted a “randomized, double-blind, placebo-controlled, multicenter clinical trial” with 180 hospitalized patients diagnosed with COVID-19.86 They concluded that ivermectin “reduces the rate of

77 Id.

78 Id.

79 Id.

81 Id. at 5.

82 Id.

83 Id. at 1.

86 Id.
mortality... and duration of hospitalization in adult COVID-19 patients,” and “[t]he improvement of other clinical parameters showed that the ivermectin, with a wide margin of safety, had a high therapeutic effect on COVID-19.”

As the data accumulated, scholars began conducting and publishing meta-analyses of the available studies. One such analysis—the Bryant review—focused on 24 total RCTs involving 3,406 participants and found “with moderate certainty that ivermectin treatment in COVID-19 provides a significant survival benefit.” It also concluded that “[u]sing ivermectin early in the clinical course may reduce numbers progressing to severe disease” and that “[t]he apparent safety and low cost suggest that ivermectin is likely to have a significant impact on the SARS-CoV-2 pandemic globally.” Following Bryant’s publication of his team’s review, the Elgazzar study—one of the RCTs included in the meta-analysis—was questioned and is now under review. This prompted Bryant’s team to reanalyze the data without the Elgazzar study, and that review still found “a clear result, showing a 49% reduction in mortality in favor of ivermectin.”

Another meta-analysis known as the Popp review has reached more skeptical conclusions. That analysis, which excluded some of the RCTs that Bryant considered, evaluated only 14 studies with 1,678 participants and determined that the “completed studies are small and few are considered high quality.” Thus, the authors expressed “uncertain[ty] about the efficacy and safety of ivermectin used to treat or prevent COVID-19.” Recently, however, the Bryant team critiqued the Popp review, highlighting, among other things, that although “Popp claims to provide a ‘complete evidence profile,’” it actually “excludes most of the available evidence.”

In further contrast, a third meta-analysis expressed doubt about ivermectin. That one—the Roman review—restricted the pool of RCTs even further, considering only 10

87 Id.
88 Bryant, Ivermectin, supra, at 451.
89 Id. at 435.
92 Id.
of them. After doing this, the authors concluded that ivermectin does "not reduce all-cause mortality, [length of hospital stay], or viral clearance... in patients with mostly mild COVID-19." As a result, the researchers announced that ivermectin "is not a viable option to treat patients with COVID-19."

In the days since its publication, the Roman review has drawn some harsh criticism. In particular, the authors of the Bryant review have highlighted four categories of flaws with Roman's work: (1) "mis-reporting of source data," (2) "highly selective study inclusion," (3) "cherry picking of data within included studies," and (4) "conclusions that do not follow from the evidence." To illustrate these flaws, consider that Roman's paper initially inverted the treatment and control arms for the Niaee study and thus indicated less mortality in the control group when in fact the opposite was true. Once that error was fixed, the numbers no longer supported the conclusion that ivermectin does "not reduce all-cause mortality." Yet the Roman team did not adjust that statement, and thus its "conclusions are no longer based on the data."

Furthermore, in a letter to the editor of the *American Journal of Therapeutics*, two researchers recently explained that Roman's conclusion of no mortality reduction "is not based on the results of the statistical analysis of the data...; instead, it was based on a somewhat vague and possibly biased subjective assessment of the quality of the trials

95 *Id.*

96 *Id.*

99 Bryant Letter to Schooley, supra, at 2.

100 *Id.*
themselves."¹⁰¹ Those researchers conducted their own Bayesian analysis, a method of statistical inference, and found that the "probability for the hypothesis of a causal link between COVID-19 severity, ivermectin, and mortality is over 99%."¹⁰² As they concluded, "[i]n our view, this Bayesian analysis, based on the statistical study data, provides sufficient confidence that ivermectin is an effective treatment for COVID-19 and this belief supports the conclusions of Bryant over those of Roman."¹⁰³ Those scholars have since published their full analysis in a paper available online.¹⁰⁴

Additional supportive evidence for Bryant’s conclusions is a non-peer-reviewed website that currently maintains a running list of 64 COVID-19-related ivermectin studies—RCTs and others—which include all the relevant ivermectin studies except the few (such as Elgazzar) whose data have been called into question.¹⁰⁵ Of those 64 studies, 31 are RCTs and 44 have been peer-reviewed.¹⁰⁶ That site posts multiple meta-analyses of different groupings of the data and concludes that "[m]eta analysis using the most serious outcome reported shows" that ivermectin leads to 66% “improvement for early treatment” and an 86% “improvement for . . . prophylaxis.”¹⁰⁷ These "[r]esults are very robust,” the site reports, because “in worst case exclusion sensitivity analysis 53 of 64 studies must be excluded to avoid finding statistically significant efficacy."¹⁰⁸

Finally, a recent mini-review of ivermectin and COVID-19 considered the studies analyzing ivermectin’s safety specifically in the context of COVID-19 treatments.¹⁰⁹ That mini-review—which was authored by Yale Professor Alessandro D. Santin—observed

¹⁰² Id.

¹⁰³ Id. at 578.

¹⁰⁶ Id.

¹⁰⁷ Id.

¹⁰⁸ Id.

that ivermectin "has been safely used in 3.7 billion doses since 1987" and that the medicine has been "used without serious [adverse effects]" in multiple "COVID-19 treatment studies."110

The existing ivermectin studies and meta-analyses are subject to vigorous ongoing disputes, and there are large ongoing studies, at least one of which includes the NIH as a collaborator, that will hopefully provide additional clarity.111 But based on the existing medical literature, we do not find clear and convincing evidence that a physician who prescribes ivermectin for COVID-19 after obtaining informed consent engages in unprofessional conduct or otherwise violates the UCA.

While we find the studies and meta-analyses sufficient to resolve this question, we note that epidemiological evidence—derived by analyzing COVID-related data from various states, countries, or regions—is also instructive in the context of a global pandemic. We highlight just a few examples.

One set of scholars analyzed data comparing the COVID-19 rates of countries that routinely administer ivermectin as a prophylaxis and countries that do not.112 The research revealed that "countries with routine mass drug administration of prophylactic . . . ivermectin have a significantly lower incidence of COVID-19."113 This "highly significant" correlation manifests itself not only "in a worldwide context" but also when comparing African countries that regularly administer prophylactic "ivermectin against parasitic infections" and African countries that do not.114 Based on these results, the researchers surmised that these results "may be connected to ivermectin's ability to inhibit SARS-CoV-2 replication, which likely leads to lower infection rates."115

110 Id. at 4.

113 Id. at 1.

114 Id.

115 Id.
More specifically, Peru’s COVID-19 statistics, which have been analyzed in pre-print studies and discussed in published ivermectin reviews, are also informative.¹¹⁶ Peru deployed mass ivermectin-based COVID-19 treatments from April 2020 through November 2020 throughout its 25 states.¹¹⁷ In ten of those states, a maximal amount of “mass [ivermectin] treatments of COVID-19 were conducted through a broadside, army-led effort, Mega-Operación Tayta (MOT).”¹¹⁸ Fourteen other states had a medium distribution of ivermectin administered at the local level.¹¹⁹ And one state, Lima, distributed a minimal amount of ivermectin due to restrictive government policies.¹²⁰ “The mean reduction in excess deaths 30 days after peak deaths was 74% for the maximal [ivermectin] distribution group, 53% for the medium group[,] and 25% for Lima.”¹²¹ Furthermore, throughout the country of Peru, “excess deaths decreased 14-fold over four months” leading up to December 1, 2020, “after which deaths then increased 13-fold when [ivermectin] use was restricted under a new president.”¹²²

¹¹⁶ Juan J. Chamie-Quintero et al., Ivermectin for COVID-19 in Peru: 14-fold reduction in nationwide excess deaths, p < 0.002 for effect by state, then 13-fold increase after ivermectin use restricted (Mar. 2021), available at https://osf.io/9egh4/ (last visited Oct. 14, 2021); see also Santin, supra, at 3–4 (discussing the Peruvian data); Kory, supra, at 311–13 (same).

¹¹⁷ Chamie-Quintero, supra, at 2.

¹¹⁸ Santin, supra, at 3.

¹¹⁹ Chamie-Quintero, supra, at 2.

¹²⁰ Id.

¹²¹ Id.

¹²² Id.
Ivermectin for COVID-19 in Peru: 14-fold reduction in nationwide excess deaths, p=.002 for effect by state, then 13-fold increase after ivermectin use restricted

Juan J. Chanie-Quintero,* Jennifer A. Hifner,† David E. Scheiner‡

A.

![Graph showing excess all-cause deaths over time with notable events marked, such as new president taking office and IVM distributions restricted.]

Figure 1. A) Excess all-cause deaths (all ages), national population of Peru. These decreased 14-fold August 1 through December 1, 2020; then, after IVM use was restricted. Increased 13-fold through February 1.

All y values are 7-day moving averages: for B.C. ages ≥ 60. Data are from Peru's National Death Information System (SINADEF).‡ B) Drops in excess deaths for all states of operation MOT, an army-led program of mass IVM distributions, but Paucar. which had them on 3 dates. ● MOT start date; ▲ peak deaths; ■ day of peak deaths + 30 days. Junin also distributed IVM 13 days before MOT start. C) Reductions in excess deaths at +30 days after peak deaths for the 25 states by extent of IVM distributions: maximal-MOT (+), mean -74%; moderate-local distributions (O), mean -53%; and minimal-Lima (x), -25%. These reductions for the 25 states correlated with extent of IVM distributions with Kendall τp=0.002.

“Potential confounding factors, including lockdowns and herd immunity, were ruled out using Google community mobility data, seropositivity rates, population densities and geographic distributions of SARS-CoV-2 genetic variations.”123 While these figures do not prove causation, they demonstrate a strong correlation between ivermectin use and mortality reductions.

Moving from Peru to India, the government in the State of Uttar Pradesh—a jurisdiction with a population of more than 200 million—"introduced a large-scale "prophylactic and therapeutic" use of [i]vermectin" that enabled it "to maintain a lower fatality and

123 Santin, supra, at 4.
positivity rate as compared to other states" in India.

As one state official explained, "Uttar Pradesh was the first state in [India] to introduce large-scale prophylactic and therapeutic use of Ivermectin." The state’s health department introduced ivermectin "as prophylaxis for close contacts of [COVID-19] patients" and "health workers," "as well as for the treatment of the patients themselves." Despite being [India’s] state with the largest population base and a high population density," that state official added, Uttar Pradesh has "maintained a relatively low positivity rate and cases per million of population." Although these statements from the Uttar Pradesh government do not prove ivermectin’s effectiveness, they are informative and worthy of some consideration.

ii. U.S. Public Health Agencies on Ivermectin

Many public health agencies in the United States have now addressed the topic of ivermectin and COVID-19. The NIH has adopted a neutral position, saying that “[t]here is insufficient evidence . . . to recommend either for or against the use of ivermectin for the treatment of COVID-19.” This position, which the NIH adopted in January 2021, overrode its prior stance of “recommend[ing] against the use of ivermectin for the treatment” of COVID-19. The reason for the change, the NIH recognized, was that “several randomized trials and retrospective cohort studies of ivermectin use in patients with COVID-19 have been published in peer-reviewed journals.” And some of those studies reported positive outcomes, including “shorter time to resolution of disease manifestations that were attributed to COVID-19, greater reduction in inflammatory marker levels, shorter time to viral clearance, [and] lower mortality rates in patients who received ivermectin than in patients who received comparator drugs or placebo.” The NIH nevertheless decided not to recommend the use of ivermectin for COVID-19 because other studies suggest "no benefits" and the NIH thought that the available studies

125 Id.

126 Id.

127 Id.

128 NIH, COVID-19 and Ivermectin, supra.

129 Yagisawa, supra, at 65.

130 NIH, COVID-19 and Ivermectin, supra.

131 Id.
generally suffered from "methodological limitations." By making a neutral recommendation, the NIH—which is continuing to collaborate on at least one study investigating ivermectin as a treatment for "mild to moderate COVID-19"—clearly signaled that physicians should use their discretion in deciding whether to treat COVID-19 patients with ivermectin.

Ignoring the NIH’s official position, officials within its agencies have sent contradictory messages. On August 29, 2021, Dr. Anthony Fauci, Director of the National Institute of Allergy and Infectious Diseases (NIAID) within the NIH, went on CNN and announced that "there is no clinical evidence" that ivermectin works for the prevention or treatment of COVID-19. Expanding on that point, he reiterated that "there is no evidence whatsoever" that it works. Yet this definitive claim directly contradicts the NIH’s recognition that "several randomized trials... published in peer-reviewed journals" have reported data indicating that ivermectin is effective as a COVID-19 treatment.

The FDA has similarly charted a course of confusion. In March 2021, the FDA posted a webpage entitled “Why You Should Not Use Ivermectin to Treat or Prevent COVID-19.” Although the FDA’s concern was stories of some people using the animal form of ivermectin or excessive doses of the human form, the title broadly condemned any use of ivermectin in connection with COVID-19. Yet there was no basis for its sweeping condemnation. Indeed, the FDA itself acknowledged on that very webpage (and continued to do so until the page changed on September 3, 2021) that the agency had not even "reviewed data to support use of ivermectin in COVID-19 patients to treat or to prevent COVID-19." But without reviewing the available data, which had long

132 Id.
135 Id.
136 NIH, COVID-19 and Ivermectin, supra.
since been available and accumulating, it is unclear what basis the FDA had for denouncing ivermectin as a treatment or prophylaxis for COVID-19.

On that same webpage, the FDA also declared that "[i]vermectin is not an anti-viral (a drug for treating viruses)." It did so while another one of its webpages simultaneously cited a study in Antiviral Research that identified ivermectin as a medicine "previously shown to have broad-spectrum anti-viral activity." It is telling that the FDA deleted the line about ivermectin not being "anti-viral" when it amended the first webpage on September 3, 2021.

The FDA has additionally assailed ivermectin's safety by suggesting, though not outright stating, that even a proper dose of human ivermectin might be dangerous when used to treat COVID-19. For example, the FDA announced that "[t]aking a drug for an unapproved use can be very dangerous" and "[t]his is true of ivermectin." Yet this ignores the fact that, as discussed above, doctors routinely prescribe medicines for off-label use and that ivermectin is a particularly well-tolerated medicine with an established safety record. Moreover, it is inconsistent for the FDA to imply that ivermectin is dangerous when used to treat COVID-19 while the agency continues to approve remdesivir despite its spottier safety record, as discussed above.

The FDA has also called into question ivermectin's potential effectiveness. When updating the "Why You Should Not Use Ivermectin" webpage on September 3, 2021, the FDA added this entry: "Currently available data do not show ivermectin is effective against COVID-19." But this claim fails to recognize that several RCTs and at least one meta-analysis suggest that ivermectin is effective against COVID-19.

139 FDA, Why You Should Not Use Ivermectin (Mar. 5, 2021), supra.

141 Caly, supra, at 1 (emphasis added).

143 FDA, Why You Should Not Use Ivermectin (Mar. 5, 2021), supra.

145 FDA, Why You Should Not Use Ivermectin (Sept. 3 2021), supra.
Moreover, a review of the studies on remdesivir makes it difficult to understand why the FDA would condemn the data supporting ivermectin. The NIH reports only five studies testing remdesivir’s efficacy against COVID-19.146 Three of those five studies show no benefit from remdesivir, with the largest of those concluding that remdesivir “did not decrease in-hospital mortality in hospitalized patients.”147 Even the two remaining studies are far from compelling. One found that “[h]ospitalized patients . . . who received 5 days of [remdesivir] had better outcomes,” but the difference “was of uncertain clinical importance.”148 And while the other study indicated that remdesivir “reduced time to clinical recovery” for “patients with severe COVID-19,” it also found “[n]o observed benefit . . . in patients with mild or moderate COVID-19” and “[n]o statistically significant difference in mortality.”149 Beyond that, in September 2021, the Lancet published the results of a large RCT (the DisCoVeRy trial) that found “[n]o clinical benefit . . . from the use of remdesivir in patients who were admitted to hospital for COVID-19, were symptomatic for more than 7 days, and required oxygen support.”150 The data on ivermectin thus appears at least as strong as the data on remdesivir.

The FDA’s most controversial statement on ivermectin came on August 21, 2021, when it posted a link on Twitter to its “Why You Should Not Use Ivermectin” webpage with this message: “You are not a horse. You are not a cow. Seriously, y’all. Stop it.”151

147 Id.

148 Id.

149 Id.

You are not a horse. You are not a cow. Seriously, y’all. Stop it.

This message is troubling not only because it makes light of a serious matter but also because it inaccurately implies that ivermectin is only for horses or cows.

Despite its attempts to impugn ivermectin, the FDA appears to recognize that doctors may prescribe it for COVID-19. On September 3, 2021, a change in its website makes this clear. The “Why You Should Not Use Ivermectin” webpage originally said that “[i]f you have a prescription for ivermectin for an FDA-approved use, get it from a legitimate source and take it exactly as prescribed.” That same sentence now omits the limitation on prescriptions to FDA-approved uses. It says that “[i]f your health care provider writes you an ivermectin prescription, fill it through a legitimate source such as a pharmacy, and take it exactly as prescribed.”

The CDC has followed in the FDA’s footsteps of implying that ivermectin is unsafe. On August 26, 2021, the CDC issued an official advisory entitled “Rapid Increase in Ivermectin Prescriptions and Reports of Severe Illness Associated with Use of Products Containing Ivermectin to Prevent or Treat COVID-19.” Like the FDA, the CDC’s

152 FDA, Why You Should Not Use Ivermectin (Mar. 5, 2021), supra.

153 FDA, Why You Should Not Use Ivermectin (Sept. 3, 2021), supra.

154 Centers for Disease Control and Prevention, Rapid Increase in Ivermectin Prescriptions and Reports of Severe Illness Associated with Use of Products Containing Ivermectin to Prevent or Treat COVID-19, supra.
sweeping title implies that severe illnesses are arising from the prescribed use of human ivermectin to combat COVID-19, but it supplies no data to indicate that human ivermectin in appropriate doses is harming anyone. On the contrary, the CDC’s advisory acknowledges that the actual concerns arise from the “use of veterinary products not meant for human consumption” and that the reported “[a]dverse effects [are] associated with ivermectin misuse and overdose.” The CDC’s instructions to the public confirm that its concerns arise from the improper use of ivermectin creams or animal formulas: “Do not swallow ivermectin products that should be used on skin (e.g., lotions and creams) or are not meant for human use, such as veterinary ivermectin products.”

None of this undermines the use of human ivermectin in proper doses for the treatment or prevention of COVID-19. If anything, the reported uptick in people resorting to animal ivermectin simply reinforces that COVID-19 patients should be encouraged to discuss human ivermectin with their healthcare providers and that those providers should be allowed to consider the available data with their patients. That would be more beneficial for public health than attempting to obscure the demonstrated safety profile of ivermectin.

The media has added to the confusion and misinformation. On August 30, 2021, the New York Times published an article about ivermectin stating that “Mississippi’s health department said earlier this month that 70 percent of recent calls to the state poison control center had come from people who ingested ivermectin from livestock supply stores.” Yet two weeks later, on September 13, 2021, the Times amended its story by deleting that sentence and adding this note after the article: “An earlier version of this article misstated the percentage of recent calls to the Mississippi poison control center related to ivermectin. It was 2 percent, not 70 percent.”

Similarly, on September 3, 2021, Rolling Stone published a story entitled “Gunshot Victims Left Waiting as Horse Dewormer Overdoses Overwhelm Oklahoma Hospitals,

155 Id.

156 Id. at 3.

Doctor Says."¹⁵⁹ Soon thereafter, one the hospitals where this doctor supposedly works denied that claim, and "the doctor [did] not respond[] to requests for further comment."¹⁶⁰ Rather than delete the article or substantially rewrite it, Rolling Stone left the article largely unchanged and amended the title to say: "One Hospital Denies Oklahoma Doctor’s Story of Ivermectin Overdoses Causing ER Delays for Gunshot Victims."¹⁶¹ In addition, the magazine added an "update" message stating, among other things, that "[o]ne hospital has denied [the doctor’s] claim that ivermectin overdoses are causing emergency room backlogs and delays in medical care in rural Oklahoma, and Rolling Stone has been unable to independently verify any such cases as of the time of this update."¹⁶² In other words, the publication allowed a story based on a discredited and nonresponsive source to remain available to the public. It is no wonder that some people are unsure what to believe about ivermectin.

iii. Foreign Public Health Agencies on Ivermectin

Looking abroad, in March 2021, the WHO "recommend[ed] not to use ivermectin in patients with COVID-19 except in the context of a clinical trial."¹⁶³ The basis for this recommendation rested not on proof that ivermectin is ineffective, but on the WHO’s belief that the existing studies were of too low quality to support any conclusive determinations.¹⁶⁴ Notably, though, while the WHO questioned the quality of the evidence, its analysis determined, based on data from 1,419 patients in seven studies, that patients treated with ivermectin had a 14 per 1,000 chance of death while patients in the control groups had a 70 per 1,000 chance of death.¹⁶⁵ Also, the WHO considered only

¹⁶¹ Id.

¹⁶² Id.

¹⁶⁴ Id.

¹⁶⁵ Id. at 23.
ivermectin’s effectiveness as a COVID-19 treatment and did not assess its potential as a prophylaxis.166

Public health authorities in other countries have declined to follow the WHO’s guidance. Most importantly, the NIH continues to embrace its neutral recommendation on ivermectin. Also, in May 2021, the State of Goa in India announced, through its health minister Vishwajit Rane, that “it would give [ivermectin] to all its adult residents” in its efforts to combat COVID-19.167 Likewise, as discussed above, India’s Uttar Pradesh continues to distribute ivermectin to people diagnosed with COVID-19. And El Salvador’s Ministry of Public Health has included ivermectin as part of its recommendations for early COVID-19 treatment via home patient kit.168 We did not conduct an exhaustive search on other countries’ practices, so this list is simply intended to be illustrative.

\textit{iv. Professional Associations and Physicians on Ivermectin}

Professional associations, both here in the United States and abroad, have adopted conflicting positions on ivermectin and COVID-19. The American Medical Association (AMA), American Pharmacists Association (APhA), and American Society of Health-System Pharmacists (ASHP) have issued a statement that “strongly oppose[s] the ordering, prescribing, or dispensing of ivermectin to prevent or treat COVID-19 outside of a clinical trial.”169 But this statement relies solely on the FDA’s and CDC’s statements. Consider the AMA, APhA, and ASHP’s claim that “[u]se of ivermectin for the prevention and treatment of COVID-19 has been demonstrated to be harmful to patients.”170 Their only support for that alarming statement is the CDC Health Alert discussed above.171 But as we explained, that CDC advisory gave no indication that any severe adverse effects are occurring from the use of human ivermectin in appropriate doses.

166 Id. at 18.

170 Id.

171 Id.
Those groups’ opposition to ivermectin also conflicts with their otherwise steadfast support for healthcare providers’ rights to prescribe medicines for off-label use. They call for ivermectin’s ban because the FDA has not approved it “to prevent or treat COVID-19” and some public-health agencies have found “insufficient evidence” to support its use.172 But just last year, these same professional associations, when discussing prescriptions for hydroxychloroquine to treat COVID-19, affirmed that “[n]ovel off-label use of FDA-approved medications is a matter for the physician’s or other prescriber’s professional judgment.”173 Moreover, the AMA elsewhere recognizes “its strong support for the autonomous clinical decision-making authority of . . . physician[s]” to “lawfully use an FDA approved drug product . . . for an off-label indication when such use is based upon sound scientific evidence.”174 In their recent ivermectin statement, however, the AMA, APhA, and ASHP ignore that some sound scientific evidence, including meta-analyses of RCTs, supports the use of ivermectin for COVID-19.

The AMA, APhA, and ASHP mentioned the statement of Merck—the original patent holder on ivermectin—as an additional basis for their position.175 Yet that does not provide persuasive support for their opposition to ivermectin. Merck’s February 2021 statement expressed its view that there is “[n]o meaningful evidence for . . . clinical efficacy in patients with COVID-19,”176 but this simply ignores the RCTs demonstrating ivermectin’s efficacy. Merck then claimed that there is “[a] concerning lack of safety data in the majority of studies.”177 While worded vaguely, this statement, when read carefully, says next to nothing. It simply acknowledges that many of the studies it references did not track safety data. It is not saying, though it might be implying, that the studies showed the medicine to be dangerous. But Merck, of all sources, knows that ivermectin is exceedingly safe, so the absence of safety data in recent studies should not be concerning to the company.

172 \textit{Id.}

175 AMA, APhA, and ASHP Statement on Ivermectin, \textit{supra}.

177 \textit{Id.}
Why would ivermectin’s original patent holder go out of its way to question this medicine by creating the impression that it might not be safe? There are at least two plausible reasons. First, ivermectin is no longer under patent, so Merck does not profit from it anymore. That likely explains why Merck declined to “conduct[] clinical trials” on ivermectin and COVID-19 when given the chance.\(^\text{178}\) Second, Merck has a significant financial interest in the medical profession rejecting ivermectin as an early treatment for COVID-19. “[T]he U.S. government has agreed to pay [Merck] about $1.2 billion for 1.7 million courses of its experimental COVID-19 treatment, if it is proven to work in an ongoing large trial and authorized by U.S. regulators.”\(^\text{179}\) That treatment, known as “molnupiravir, aims to stop COVID-19 from progressing and can be given early in the course of the disease.”\(^\text{180}\) On October 1, 2021, Merck announced that preliminary studies indicate that molnupiravir “reduced hospitalizations and deaths by half,”\(^\text{181}\) and that same day its stock price “jumped as much as 12.3%.”\(^\text{182}\) Thus, if low-cost ivermectin works better than—or even the same as—molnupiravir, that could cost Merck billions of dollars.

While one side of the “professional associations” ledger includes the AMA, APhA, and ASHP (with Merck’s backing), other associations disagree with their stance. In particular, the Association of American Physicians and Surgeons (AAPS)—a long-established group that has represented doctors in all specialties since 1943—has raised questions concerning those associations’ “startling and unprecedented position that American physicians should immediately stop prescribing, and pharmacists should stop honoring their prescriptions for ivermectin for COVID-19 patients.”\(^\text{183}\) The AAPS pointed “out that many physicians disagree with the AMA, writing around 88,000 ivermectin

\(^{178}\) Yagisawa, supra, at 61.

\(^{180}\) Id.

prescriptions per week.”184 The AAPS has thus publicly resisted these groups’ call to “stop[] the off-label use of long-approved drugs.”185

In addition, the Tokyo Metropolitan Medical Association, as explained by its chairman Haruo Ozaki, recommended the use of ivermectin for COVID-19 patients in February 2021.186 That organization emphasized that ivermectin should be administered to people diagnosed with COVID-19 because, among other reasons, it has been effective when used in other countries.187 Other doctors’ groups similarly advocate for ivermectin as a staple of early COVID-19 treatment. The Front Line COVID-19 Critical Care Alliance has been an outspoken supporter. Its organization “regard[s] ivermectin as a core medication in the prevention and treatment of COVID-19,”188 and it includes a five-day course of ivermectin as part of its COVID-19 early treatment protocol.189 Also, the British Ivermectin Recommendation Development Group (BIRD) is a UK-based association of “clinicians, health researchers[,] and patient representatives from all around the world” that collectively “advocate[s] for the use of ivermectin” against COVID-19.190

In summary, the evidence discussed above shows (1) that ivermectin has demonstrated some effectiveness in preventing and treating COVID-19 and (2) that its side effects are primarily minor and transient. Thus, the UCA does not preclude physicians from considering ivermectin for the prevention or treatment of COVID-19.

184 Id.
185 Id.
187 Id.
4. Hydroxychloroquine

A. History of Hydroxychloroquine

Hydroxychloroquine, a less toxic derivative of a medicine named chloroquine, was first developed in 1946191 and approved by the FDA in 1955.192 Since that time, hydroxychloroquine has been widely used as a prophylaxis and treatment for malaria.193 It has also “prove[n] to be effective in a number of autoimmune diseases,” including systemic lupus erythematosus,194 primary Sjögren’s syndrome, and rheumatoid arthritis, and for those uses, it is often taken daily for years at a time.195 Hydroxychloroquine’s success against these autoimmune diseases “is linked to its anti-inflammatory and immunomodulatory effects.”196 Because of its versatility and efficacy, “[m]illions of hydroxychloroquine doses are prescribed annually.”197 In just the year 2019, hydroxychloroquine was prescribed over 5.4 million times in the United States alone.198

In 2004, long before the COVID-19 pandemic began, a lab study revealed that chloroquine is “an effective inhibitor of the replication of the severe acute respiratory syndrome coronavirus (SARS-CoV) in vitro” and thus that it should “be considered for immediate use in the prevention and treatment of SARS-CoV infections.”199 The following

\begin{itemize}

 \item Id.

 \item Id.

 \item Fram, supra, at 389.

\end{itemize}
year, another paper explained that "chloroquine has strong antiviral effects on SARS-CoV infection" and "is effective in preventing the spread of SARS-CoV in cell culture."200

It is widely recognized in the medical community that hydroxychloroquine is generally safe, so safe in fact that it may be prescribed to pregnant women201 and "children of all ages."202 During the beginning of the pandemic, the FDA Commissioner stated that hydroxychloroquine has a "well-established safety profile" for malaria, lupus, and rheumatoid arthritis.203 According to the CDC, hydroxychloroquine's "most common adverse reactions reported" are minor issues such as "stomach pain, nausea, vomiting, . . . headache," and "itching."204 While the CDC recognizes that high doses, "such as those used to treat rheumatoid arthritis, have been associated with retinopathy," a serious eye condition, that side effect is "extremely unlikely" when hydroxychloroquine is used in short durations with moderate doses.205 Notably, the CDC's guidance on hydroxychloroquine does not mention any concerns about cardiac disorders stemming from the drug.

B. Hydroxychloroquine and COVID-19

At the outset of the pandemic, researchers found—consistent with the prior studies demonstrating chloroquine's efficacy against SARS-CoV—that hydroxychloroquine "can efficiently inhibit SARS-CoV-2 infection in vitro."206 These COVID-19 studies specifically

201 Ponticelli & Moroni, \textit{supra}, at 411; \textit{see also} Ewa Haladyj et al., \textit{Antimalarials - are they effective and safe in rheumatic diseases?}, 56 Reumatologia 164, 171-72 (2018), \textit{available at} https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052376/pdf/RU-56-33240.pdf (last visited Oct. 14, 2021) (noting that hydroxychloroquine "can be continued in the treatment of rheumatic diseases during pregnancy and lactation").

204 CDC, Malaria Travel, \textit{supra}.

showed that hydroxychloroquine “can inhibit [SARS-CoV-2] virus entry, transmission[,] and replication.”207 In addition to this “antiviral activity,” hydroxychloroquine also has “anti-inflammatory properties” that help regulate “pro inflammatory cytokines.”208 These characteristics—both the antiviral properties and the anti-inflammatory activity—are important countermeasures against COVID-19.

\textit{i. Hydroxychloroquine Studies and Meta-analyses}

Many large observational studies suggest that hydroxychloroquine significantly reduces the risk of hospitalization and death when administered to outpatients—particularly high-risk outpatients—as part of early COVID-19 treatment. For example, the Mokhtari study “was a multicenter, population-based national retrospective-cohort investigation of 28,759 adults with mild COVID-19 seen . . . between March and September 2020 throughout Iran.”209 The data showed that “[t]he odds of hospitalization . . . reduced by 38\%” and the chance of death decreased by 73\% for those who took hydroxychloroquine.210 Critically, those “effects were maintained after adjusting for age, comorbidities, and diagnostic modality,” and “[n]o serious [hydroxychloroquine]-related adverse drug reactions were reported.”211

In the same vein, the recently published Million study evaluated 10,429 “adult outpatients” in France infected with SARS-CoV-2 who were “treated early” with hydroxychloroquine plus azithromycin.212 Only five deaths occurred among the 8,315 patients who received hydroxychloroquine plus azithromycin—a mere 0.6 per 1,000 patients—while 11 died among the 2,114 who received either no treatment or azithromycin alone—a much higher rate of 5.2 per 1,000 patients.213 Based on these figures, the study’s authors found that hydroxychloroquine “was associated with a lower risk of death, independently of age, sex[,] and epidemic period.”214 Million’s team thus concluded that

208 \textit{Id}.

210 \textit{Id}.

211 \textit{Id}.

212 Million, \textit{supra}, at 1063.

213 \textit{Id} at 1066.

214 \textit{Id} at 1063.
“[e]arly ambulatory treatment of COVID-19" with hydroxychloroquine plus azithromycin “is associated with very low mortality” and it “improve[s] COVID-19 survival compared to other regimens.”

Another group of researchers assessed an elderly population living in a nursing home in the small European state of Andorra. Their study included “100 COVID-19 confirmed cases” in the nursing home “from March 15 to June 5, 2020.” After evaluating the numbers, these researchers concluded that “[t]reatment with hydroxychloroquine and azithromycin was associated with lower mortality in these patients.” And “the multivariate logistic regression analysis identified hydroxychloroquine plus azithromycin treatment as an independent factor favoring survival compared with no treatment or other treatments.” The study also reinforced hydroxychloroquine’s longstanding safety profile because “[c]ardiac monitoring was performed by electrocardiogram, and no rhythm changes were observed . . . in any patient.”

Added to all this, a preprint of another large observational study by Sulaiman supports the use of hydroxychloroquine as part of early COVID-19 treatment. This “study took place in 238 ambulatory fever clinics in Saudi Arabia” during June 2020. Of the 5,541 participating patients, 1,817 were given hydroxychloroquine, and 3,724 received only supportive care. The researchers found that early hydroxychloroquine-based “therapy was associated with a lower hospital admission” of 9.4% compared to 16.6% for supportive care alone, which equated to a relative risk reduction of 43%. “Adjusting for age, gender, and major comorbid conditions, a multivariate logistic regression model” further confirmed the significant decrease in the hospitalization risk of

215 ld.

217 ld.

218 ld.

219 ld. at 606.

220 ld. at 603.

222 ld.

223 ld.
patients who received hydroxychloroquine. Regression analysis also demonstrated that hydroxychloroquine reduced the mortality risk by an odds ratio of .36, which equates to a threefold drop in deaths. Other observational studies further suggest that hydroxychloroquine has value as an early COVID-19 treatment.

We acknowledge that other studies and meta-analyses have concluded that hydroxychloroquine has little to no effect on COVID-19. Yet those materials generally blur the important distinction between hydroxychloroquine’s efficacy as an early treatment for mild COVID-19 in nonhospitalized patients and its efficacy as a late treatment for severe COVID-19 in hospitalized patients. As explained above, COVID-19 in its early stages, which consists primarily of cold- and flu-like symptoms, is very different from severe COVID-19, which is a lower respiratory disease often accompanied by respiratory failure and multiple organ dysfunction. Thus, evidence about hydroxychloroquine’s use “in inpatients” is irrelevant with regard to the efficacy of [the drug] in early high-risk outpatient disease. So even if hydroxychloroquine is not effective against severe COVID-19, that does not disprove its value as an early treatment against the disease.

The key, then, is to focus on data that assess hydroxychloroquine’s effectiveness in early treatment. A prime example of that is a recently published meta-analysis that combined the Million, Mokhtari, and Sulaiman studies discussed above with two other

224 Id.
225 Id. at 14.
228 Id. at 3 (noting that this meta-analysis considered studies of people with “confirmed COVID-19, regardless of . . . the severity of illness”).
outpatient studies.230 Those five studies together included 32,124 total outpatients, and the analysis revealed that hydroxychloroquine is associated with a 69% reduction in mortality when used as an early COVID-19 treatment.231 In addition, a few months ago, another team of researchers reviewed “nine reports of early treatment outcomes in COVID-19 nursing home patients.”232 Data from those studies revealed that “hydroxychloroquine-based multidrug regimens were associated with a statistically significant > 60% reduction in mortality.”233 And another scholar, Dr. Harvey A. Risch, Professor of Epidemiology at Yale School of Public Health, has published online a non-peer-reviewed meta-analysis of ten studies exploring hydroxychloroquine as an early COVID-19 treatment.234 He concluded that for people receiving that treatment the odds ratio of hospitalization was .56 and the odds ratio of death was .25. In other words, his meta-analysis demonstrated that when hydroxychloroquine is administered as an early COVID-19 treatment, it can reduce the risk of death by 75%.

To be sure, these data derive from large-scale observational studies rather than RCTs, and we understand that RCTs are considered the gold standard in medicine. But for at least two reasons, we find these observational studies sufficient for our purposes. First, our role is not to set a standard for the practice of medicine. Rather, we must simply confirm whether reasonable medical evidence supports the use of hydroxychloroquine as an early COVID-19 treatment, and we determine that a collection of large-scale observational studies suffices for that purpose. Second, a seminal review of the scientific literature has revealed that “on average, there is little evidence for significant effect estimate differences between observational studies and RCTs, regardless of specific observational study design, heterogeneity, or inclusion of studies of pharmacological interventions.”235 There is thus no basis to cast aside the observational studies demonstrating hydroxychloroquine’s efficacy as an early COVID-19 treatment.

230 Million, supra, at 1070.

231 Id.

233 Id.

We turn now to discuss the use of hydroxychloroquine as a prophylaxis, and although the data on that point seem to be smaller, there is some evidence suggesting that it might work for that purpose too. One study was a RCT of migrant workers quarantined in a large dormitory in Singapore, and it compared a group who used hydroxychloroquine as a prophylaxis to a group that received only vitamin C.236 The hydroxychloroquine group included 432 people, and only 31 of them (7.2\%) contracted COVID-19 with acute respiratory symptoms.237 In contrast, 619 individuals were in the vitamin C group, and 69 of them (11.1\%) developed COVID-19 with acute respiratory symptoms.238 Thus, the researchers concluded that prophylaxis with hydroxychloroquine is "superior to oral vitamin C in reducing SARS-CoV-2 infection."239 Additionally, an observational study of healthcare workers in Bulgaria found that out of 156 workers who used hydroxychloroquine as a prophylaxis, none of them presented with COVID-19 symptoms.240 By contrast, in the group of 48 workers who did not take hydroxychloroquine, three of them developed a symptomatic case of COVID-19.241 These results prompted the administrators at the Bulgarian Cardiac Institute to start a prophylactic strategy for their workers that "includes alternative months of [hydroxychloroquine] intake (200 mg daily) and months without therapy."242 In addition to these studies, there are a few others, some of which suggest marginal benefits, and some of which suggest that there might not be any. We are not aware of any of these studies showing serious adverse effects from use of low-dose hydroxychloroquine as a COVID-19 prophylaxis.

We pause here to reiterate that it is not our role to resolve the debate on hydroxychloroquine’s effectiveness, either as an early COVID-19 treatment or as a preventative measure. These are matters for individual healthcare providers to assess based on the available data in consultation with their patients. Our only point is that reasonable data support the use of hydroxychloroquine as an early COVID-19 treatment and as a prophylaxis, and in light of that, we cannot find clear and convincing evidence

237 \textit{Id.} at 319.

238 \textit{Id.}

239 \textit{Id.} at 314.

241 \textit{Id.}

242 \textit{Id.}
to file disciplinary actions against physicians who prescribe hydroxychloroquine for either of those purposes.

ii. Hydroxychloroquine, COVID-19, and Safety

During the pandemic, the FDA raised questions about hydroxychloroquine and adverse cardiac events. These kinds of concerns prompted one group of scholars to conduct a systematic review of the hydroxychloroquine safety literature pre-COVID-19. Their review of the data indicated that people taking that medication in appropriate doses “are at very low risk of experiencing cardiac [adverse events], particularly with short term administration” of the drug. The pre-COVID-19 data showed that heart issues occurred—albeit infrequently—only when patients took hydroxychloroquine in dangerously high doses or for many years on end.

As to the increase of adverse cardiac events associated with COVID-19, the researchers questioned the prevalence of the problem by noting that several COVID-19 studies recorded “the use of [hydroxychloroquine] at variable doses without significant cardiac toxicity.” They also observed that COVID-19 itself often causes heart issues. As they explained, “[t]he underlying pathophysiology of SARS-CoV-2 contributes to cardiac complications in the population it infects, with estimates ranging from 20-40% incidence.” In particular, “[c]ardiac complications of cytokine storm have been well documented to involve fatal cardiac dysrhythmias and acute systolic heart failure.” These researchers thus concluded that “the reported increased arrhythmic events in the COVID-19 era appear to be more related with the direct inflammatory effect of the virus (myocarditis) or the concomitant administration of multiple drugs capable of prolonging QT intervals rather than to hydroxychloroquine itself.” They did not seem to think the medication itself had “change[d] after 70 years” of widespread use.

244 *Fram, supra,* at 391.

245 *Id.* at 390–92.

246 *Id.* at 393.

247 *Id.* at 392.

248 *Id.* at 393.

249 *Id.* at 394.

250 *Id.*
Dannette R. Smith
Page 39

Others echoed these views. Another group reviewed the relevant studies and observed that “[m]ost of the available and credible data suggest that [hydroxychloroquine] is a safe drug.”251 That includes the pre-COVID-19 data—in “decades of . . . use by rheumatologists, . . . cardiac toxicity was rarely ever seen”—as well as the COVID-19-related studies—for example, the RECOVERY trial found “no cardiotoxicity” by hydroxychloroquine.252 Indeed, the RECOVERY trial “prove[d] that [hydroxychloroquine] did not increase cardiac complications in COVID-19 cases despite using 4 times higher dosage than that used by rheumatologists.”253 These authors also emphasized that “[m]ultiple mechanisms cause cardiac complications in patients with COVID-19 infection”,254 thus, the infection’s propensity to cause “intrinsic cardiac abnormalities . . . is probably acting as a confounder.”255

Still another set of researchers reevaluated hydroxychloroquine’s safety during the pandemic. They conducted a “meta-analysis to compare the safety of [hydroxychloroquine] versus placebo” for any indication.256 Although their “meta-analysis of RCTs found a significantly higher risk of skin pigmentation [issues] in [hydroxychloroquine] users versus placebo,” they did not find any statistically significant increases in other adverse events, including “cardiac toxicity.”257

In addition to these data tending to confirm hydroxychloroquine’s safety when used in appropriate doses, a few other factors further lessen the cardiac concerns. For starters, one piece of key evidence contributing to the safety concerns surrounding hydroxychloroquine rested on admittedly fraudulent data. As discussed above, it was a study published in the Lancet on May 22, 2020.258 That study claimed that hydroxychloroquine was “associated with . . . an increased frequency of ventricular

252 Id.

253 Id. at 102.

254 Id. at 102.

255 Id. at 100.

257 Id.

258 Mehra, supra.
arrhythmias when used for treatment of COVID-19."²⁵⁹ That supposed finding was so startling that "major drug trials" involving hydroxychloroquine "were immediately halted"²⁶⁰ the WHO started pressuring countries like Indonesia that were widely using hydroxychloroquine to ban it;²⁶¹ and some countries—including France, Italy, and Belgium—decided to stop using it for COVID-19.²⁶²

The problem, however, is that the study was based on false data from a company named Surgisphere, whose founder and CEO Sapan Desai was a co-author on the published paper.²⁶³ The data were so obviously flawed that journalists and outside researchers began raising concerns within days of the paper’s publication.²⁶⁴ Even the Lancet’s editor in chief, Dr. Richard Horton, admitted that the paper was a “fabrication,” "a monumental fraud,"²⁶⁵ and “a shocking example of research misconduct in the middle of a global health emergency.”²⁶⁶ Approximately two weeks after its publication, the paper was retracted.²⁶⁷ An article published in The Guardian declared that “[g]iven the seriousness of the topic and the consequences of the paper, this [was] one of the most consequential retractions in modern history.”²⁶⁸ Despite calls to ‘publish full explanations

²⁵⁹ Id. at 1.

²⁶³ Boseley & Davey, supra.

²⁶⁴ Davey, supra.

²⁶⁵ Rabin, supra.

²⁶⁶ Boseley & Davey, supra.

²⁶⁷ Id.

²⁶⁸ Heathers, supra.
of what happened," the Lancet has "declined to provide details regarding the retracted study."\(^{269}\)

Further reducing the cardiac concerns is important information on the FDA's own website. The FDA "cautions against use of hydroxychloroquine . . . for COVID-19 outside of the hospital setting or a clinical trial due to risk of heart rhythm problems."\(^{270}\) But the agency's referenced support for this cautionary statement concerning nonhospitalized patients is its "review of safety issues with the use of hydroxychloroquine . . . to treat hospitalized patients with COVID-19."\(^{271}\) It is questionable, however, to theorize about risks to nonhospitalized patients with mild COVID-19 based on data about heart issues in hospitalized patients with severe COVID-19 because, as explained above, cardiac complications often accompany the late stages of COVID-19. The FDA's concerns thus derive from a context—using hydroxychloroquine to treat hospitalized patients—that we are not addressing in this opinion.

It is important to note that although the medical literature tends to confirm that hydroxychloroquine is a safe medication when used in appropriate doses, any concerns about heart issues, even if resting on limited evidence, are serious. Prevailing principles of informed consent likely require physicians who present patients with the option of using hydroxychloroquine for early treatment of COVID-19 to inform them about the cardiac concerns that the FDA has identified. Also, for patients who have underlying cardiac issues, physicians should carefully consider whether hydroxychloroquine is the right choice for them. Finally, physicians should pay attention to which drugs they combine with hydroxychloroquine and evaluate the potential cardiac risks of those combinations. Failure to take such precautions could result in disciplinary action.

iii. U.S. Public Health Agencies on Hydroxychloroquine

The public health agencies in the United States have addressed the topic of hydroxychloroquine and COVID-19. The NIH "recommends against" its use "for the treatment of COVID-19 in hospitalized patients . . . and in nonhospitalized patients."\(^{272}\) To justify its position against hydroxychloroquine for nonhospitalized patients, the NIH relied heavily on a RCT conducted by Mitja.\(^{273}\) While that study did not show great advantages in the hydroxychloroquine group, that group did have, as the NIH's own research has shown, a higher incidence of cardiac events.

\(^{269}\) Rabin, supra.

\(^{271}\) Id. (emphasis added).

\(^{272}\) NIH, COVID-19 and Hydroxychloroquine, supra.

\(^{273}\) Id.
website reports, a slight reduction in the risk of hospitalization (7.1% risk in the control arm versus 5.9% risk in the treatment arm) and in the time to resolution of symptoms (12 days in the control arm versus 10 days in the treatment arm).274 As for serious adverse events, more (12) were reported in the control group than the hydroxychloroquine group (8), and the researchers determined that the serious adverse events in the hydroxychloroquine group were not related to the drug.275 Thus, this study, particularly when considered in light of the large-scale observational studies discussed above, appears to be an insufficient basis to definitively recommend against using hydroxychloroquine as an early COVID-19 treatment.

The FDA, for its part, has questioned not only hydroxychloroquine’s safety, as we discussed above, but also its efficacy. The agency’s position grew out of its approval and subsequent disapproval of an Emergency Use Authorization (EUA) involving hydroxychloroquine. That EUA was issued on March 28, 2020, and it authorized licensed healthcare providers to use hydroxychloroquine donated to the Strategic National Stockpile to treat patients hospitalized with COVID-19.276 Though this EUA was necessary to authorize the use of a specific source of hydroxychloroquine for a specific purpose, it was not required to allow healthcare providers to prescribe hydroxychloroquine off-label for COVID-19. That option was already available, as our prior discussion of off-label use makes clear. When the FDA revoked the EUA a few months later, on June 15, 2020, that is when it stated its current position on hydroxychloroquine and COVID-19.277

In that revocation, the FDA said that it no longer “believe[s] that oral formulations of [hydroxychloroquine] . . . may be effective in treating COVID-19” or that “that the known and potential benefits of these products outweigh their known and potential risks.”278

275 Id. (discussing Mitjà, supra).

276 Letter from Denise M. Hinton, Chief Scientist, U.S. Food and Drug Administration, to Dr. Rick Bright, Director of Biomedical Advanced Research and Development Authority (BARDA), Office of Assistant Secretary for Preparedness and Response (ASPR), U.S. Department of Health and Human Services (HHS) (Mar. 28, 2020), available at \url{https://www.fda.gov/media/136534/download} (last visited Oct. 14, 2021).

277 Letter from Denise M. Hinton, Chief Scientist, U.S. Food and Drug Administration, to Gary L. Disbrow, Deputy Assistant Secretary, Director of Medical Countermeasure Programs, Biomedical Advanced Research and Development Authority (BARDA), Office of Assistant Secretary for Preparedness and Response (ASPR), U.S. Department of Health and Human Services (HHS) (Jun. 15, 2020), available at \url{https://www.fda.gov/media/138945/download} (last visited Oct. 14, 2021).

278 Id. at 2.
Because both the EUA and its revocation deal only with hydroxychloroquine’s use in hospitalized patients, they do not address the treatment topic that we are considering in this opinion—hydroxychloroquine’s use as an early COVID-19 treatment.

The FDA’s EUA revocation included four justifications, none of which establishes—let alone by clear and convincing evidence—that hydroxychloroquine is ineffective as an early treatment of COVID-19. First, the FDA said that the “suggested dosing regimens . . . are unlikely to produce an antiviral effect” because they will not create sufficient “drug concentration” in the body. But as the FDA’s revocation itself acknowledged, hydroxychloroquine’s “immunomodulatory effects,” as opposed to its antiviral effects, are not “predicated on achieving [certain hydroxychloroquine] concentration[]” levels. Moreover, the FDA based its views on the assumption that “free drug concentration in the plasma” are “likely to be equal to free extracellular tissue concentration.” But other researchers’ simulations showed that hydroxychloroquine’s “concentration in lung tissue was much higher than in plasma,” leading them to conclude that moderate doses are “recommended to treat SARS-CoV-2 infection.” Thus, the FDA’s pessimism about hydroxychloroquine’s potential antiviral capacity is open to reasonable debate in the scientific community.

Second, the FDA wrote that “[e]arlier reports of decreased viral shedding” with hydroxychloroquine “treatment have not been consistently replicated.” Notice that the FDA did not say that the studies have disproven a reduction in viral shedding; rather, the agency recognized that the evidence was still evolving and that some studies did in fact observe a positive “impact on viral shedding.” This criticism, on its face, is thus insufficient to dismiss hydroxychloroquine’s use as an early COVID-19 intervention. Additionally, doubts about hydroxychloroquine’s effect on viral shedding question only one of the drug’s many possible mechanisms of action against COVID-19. More salient

280 Id. at 4.

281 Id.

283 Id. at 2.

284 FDA EUA Revocation Memo, supra, at 1.

285 Id. at 6.
information is whether the drug is actually decreasing hospitalization and mortality rates when used as an outpatient treatment. As we discussed above, many large observational studies strongly suggest that hydroxychloroquine does in fact keep people diagnosed with COVID-19 out of the hospital and alive. That evidence is far more relevant of the drug’s potential efficacy as an early COVID-19 treatment than debates about viral shedding.

Third, the FDA found it compelling that “NIH guidelines now recommend against” using hydroxychloroquine “outside of a clinical trial.” But as previously explained, the NIH’s recommendation concerning COVID-19 outpatients does not rest on undisputed support. Thus, the NIH’s guidelines should not be considered a basis upon which to ban healthcare providers from using hydroxychloroquine for COVID-19.

Fourth, the FDA stressed that “[r]ecent data from a large randomized controlled trial”—the RECOVERY trial mentioned above—“showed no evidence of benefit . . . of [hydroxychloroquine] treatment in hospitalized patients with COVID-19.” Yet as we have already discussed, a study about hospitalized patients does not address hydroxychloroquine’s efficacy as an outpatient COVID-19 treatment. Indeed, the RECOVERY team itself reported that while its “findings indicate that hydroxychloroquine is not an effective treatment for hospitalized patients with Covid-19,” it does “not address [the drug’s] use as prophylaxis or in patients with less severe SARS-CoV-2 infection managed in the community.” In sum, none of the FDA’s four reasons, in isolation or taken together, clearly establish that hydroxychloroquine is ineffective as an early treatment against COVID-19.

Despite raising doubts about hydroxychloroquine’s use against COVID-19, the FDA has consistently affirmed that healthcare providers retain the right to use hydroxychloroquine as a part of early COVID-19 treatment. At least four statements demonstrate this.

First, the FDA’s current website says (and has said since July 2020) that “[i]f a healthcare professional is considering use of hydroxychloroquine or chloroquine to treat or prevent COVID-19, FDA recommends checking www.clinicaltrials.gov for a suitable clinical trial and consider enrolling the patient.” This plainly assumes that healthcare providers have the right to use hydroxychloroquine to treat COVID-19.

Second, on May 29, 2020, then-FDA Commissioner Stephen Hahn acknowledged that “[m]any physicians have . . . prescribed [hydroxychloroquine] for patients with COVID-19 based on an individual assessment of the potential benefits versus the risks

286 Id. at 1.

287 Id.

for an individual patient.”\footnote{289} He added that “[p]rescribing a product for uses not specifically included in the official labeling is common in the practice of medicine” and that the FDA does not “prohibit[] physicians from prescribing medications” because the agency does “not regulate the practice of medicine.”\footnote{290} These statements are still posted on the FDA’s website, and we are not aware of any subsequent FDA statements revoking them.

Third, in June 2020, after the FDA revoked the hydroxychloroquine EUA, Health and Human Services Secretary Alex Azar said: “At this point, hydroxychloroquine and chloroquine are just like any other approved drug in the United States. They may be used in hospital, they may be used in outpatient, they may be used at home—all subject to a doctor’s prescription.”\footnote{291} Leaving no doubt about this point, Secretary Azar added that “[i]f a doctor wishes to prescribe [hydroxychloroquine], working with a patient, they may prescribe it for any purpose that they wish.”\footnote{292} We are not aware of any subsequent statement revoking this guidance.

Fourth, in late July 2020, then-FDA Commissioner Hahn reiterated that “whether people should take hydroxychloroquine as a treatment” for COVID-19 is a decision that “should be made between a doctor and a patient.”\footnote{293} He specifically stated: “A doctor and a patient need to assess the data that’s out there, FDA does not regulate the practice of medicine, and that in the privacy of the doctor-patient relationship is where that decision should be made.”\footnote{294}

iv. Foreign Public Health Agencies, Professional Associations, and Physicians on Hydroxychloroquine

The WHO “recommend[s] against administering hydroxychloroquine . . . for treatment of COVID-19” for “patients with any disease severity and any duration of symptoms.”\footnote{295} It reached this recommendation after concluding that hydroxychloroquine

\footnote{289} FDA, Bringing Perspective, \textit{supra}.\
\footnote{290} \textit{Id}.\
\footnote{292} \textit{Id}.\
\footnote{294} \textit{Id}.\
"probably do[es] not reduce mortality" and that its "effect on . . . admission to hospital . . . remains uncertain." To the extent that this recommendation purports to address hydroxychloroquine’s effectiveness as an early treatment for COVID-19, it arguably rests on weak evidence. Although it is difficult to determine how many of the studied individuals were outpatients, it appears that most were hospitalized. For instance, the WHO says that it consulted 29 studies in concluding that "[h]ydroxychloroquine probably does not reduce mortality," but the only study specifically cited is the RECOVERY trial, which, as we already indicated, included only patients hospitalized with COVID-19. In addition, the WHO’s statistics on hospitalization rates, which consisted of one RCT that included 465 outpatients, suggests hydroxychloroquine’s efficacy. That trial revealed a hospitalization rate of 47 per 1,000 people in the control group but only 19 of 1,000 people in the hydroxychloroquine arm. It thus seems as if the WHO may have overreached in definitively declaring that hydroxychloroquine holds no promise as an early COVID-19 treatment.

The WHO also "recommend[s] against administering hydroxychloroquine prophylaxis to individuals who do not have COVID-19" because it believes that prophylaxis "hydroxychloroquine has a small or no effect on death and hospital admission" and that it "probably has a small or no effect on laboratory-confirmed COVID-19." Disagreeing with this, the team of researchers conducting the COPCOV trial on prophylaxis hydroxychloroquine has announced that the WHO’s conclusions are "scientifically unsound." In their statement on this topic, the COPCOV team explained that the available RCTs "suggest substantial uncertainty as to the benefit of hydroxychloroquine in preventing COVID-19," but the "overall trend [is] towards benefit."

\[296\] Id. at 27.
\[297\] Id. at 28.
\[298\] RECOVERY Collaborative Group, supra, at 2030.
\[299\] WHO COVID-19 Guidelines, supra, at 29.
\[300\] Id.
\[303\] Id.
As for the professional associations' and physician groups' views on hydroxychloroquine, it appears that they generally adopt the same position they took on ivermectin. Those like the AAPS that support ivermectin as an option for early COVID-19 treatment generally support hydroxychloroquine too, while those like the AMA, APhA, and ASHP that oppose one typically resist the other. Additionally, many physician groups use early COVID-19 treatment protocols that include hydroxychloroquine. For example, an article co-authored by over 50 doctors in Reviews in Cardiovascular Medicine outlines an early treatment protocol that includes hydroxychloroquine as a key component.\footnote{McCullough, Multifaceted, supra, at 522-23.}

Considering the evidence discussed above, we do not find that clear and convincing evidence would warrant disciplining physicians who prescribe hydroxychloroquine for the prevention or early treatment of COVID-19 after first obtaining informed patient consent.

CONCLUSION

Based on the available data, we do not find clear and convincing evidence that a physician who first obtains informed consent and then utilizes ivermectin or hydroxychloroquine for COVID-19 violates the UCA. This conclusion is subject to the limits noted throughout this opinion. Foremost among them are that if physicians who prescribe ivermectin or hydroxychloroquine neglect to obtain informed consent, deceive their patients, prescribe excessively high doses, fail to check for contraindications, or engage in other misconduct, they might be subject to discipline, no less than they would be in any other context.

As we have stressed throughout, this opinion is based only on the data and information available at this time. If the relevant medical evidence materially changes, that could impact our conclusions. Also, though an opinion from our office about possible UCA violations would ordinarily focus on healthcare practices within Nebraska, the context of a global pandemic necessitates looking for evidence far beyond our State's borders, as we have done here. Thus, the analytical roadmap in this opinion likely has limited application outside the circumstance of a global pandemic.

We emphasize in closing that our office is not recommending any specific treatments for COVID-19. That is not our role. There are multiple treatment options outside the scope of this opinion—including treatments that have been officially approved by the FDA—that physicians and their patients should carefully consider. This opinion takes no position on them. Rather, we address only the off-label early treatment options discussed in this opinion and conclude that the available evidence suggests that they might work for some people. Allowing physicians to consider these early treatments will free them to evaluate additional tools that could save lives, keep patients out of the hospital, and provide relief for our already strained healthcare system.
Very truly yours,

DOUGLAS J. PETERSON
Attorney General

James A. Campbell
Solicitor General

Mindy L. Lester
Assistant Attorney General

Approved by:

[Signature]
Attorney General